The maximal cp-rank of rank k completely positive matrices
نویسندگان
چکیده
منابع مشابه
Matrices with High Completely Positive Semidefinite Rank
A real symmetric matrix M is completely positive semidefinite if it admits a Gram representation by positive semidefinite matrices (of any size d). The smallest such d is called the completely positive semidefinite rank of M , and it is an open question whether there exists an upper bound on this number as a function of the matrix size. We show that if such an upper bound exists, it has to be a...
متن کاملCompletely Positive Semidefinite Rank
An n×n matrix X is called completely positive semidefinite (cpsd) if there exist d×d Hermitian positive semidefinite matrices {Pi}i=1 (for some d ≥ 1) such that Xij = Tr(PiPj), for all i, j ∈ {1, . . . , n}. The cpsd-rank of a cpsd matrix is the smallest d ≥ 1 for which such a representation is possible. In this work we initiate the study of the cpsd-rank which we motivate twofold. First, the c...
متن کاملOn the cp-Rank and Minimal cp Factorizations of a Completely Positive Matrix
We show that the maximal cp-rank of n×n completely positive matrices is attained at a positive-definite matrix on the boundary of the cone of n×n completely positive matrices, thus answering a long standing question. We also show that the maximal cp-rank of 5×5 matrices equals six, which proves the famous Drew-JohnsonLoewy conjecture (1994) for matrices of this order. In addition we present a s...
متن کاملOn higher rank numerical hulls of normal matrices
In this paper, some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated. A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given. Moreover, using the extreme points of the numerical range, the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$, where $A_1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2003
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(02)00250-1